The Web Conference 2021 April 15, 2021

Tutorial 18: Going for Yol

09:00 Introduction

09:15 Part 1: Efficient Frontend Design
09:40 Q&A
09:50 Coffee Break

10:00 Part 2: High-Performance Networking
10:40 Q&A
10:50 Coffee Break

11:00 Part 3: Scalable Backend Architectures
1140 Q&A
11:50 Coffee Break

12:00 Part 4: Performance Tracking & Analysis
12:00 The Core Web Vitals (Google Guest Speaker!)
12:30 Measuring Web Performance

1250 Q&A Bagend

Going for el

Part 3:
Scalable Backend Architectures

The Web Conference
April 15, 2021
Tutorial

Wolfram Wingerath, Benjamin Wollmer, Felix Gessert, Stephan Succo, Norbert Ritter

The 4[4 le[I[Egle[:{of Web Performance

Up ne@

(© Backend Processing |

O

o

How toq Database System

1

Dynamic Web App

Wosgng besdna Hesdma

Application Layer n-

Billing Data Nested
Application Data

Friend @ . ég : g‘ a Google Cloud
network mongoDB cass:: Storage
" Recommen-
Cached C?'ata Search Index .)
& metrics dation Engine

?® Neoyj i ' " Clast
.. the grap41.'l]database é redls e ‘ a St Icsearc h : Mr::;ce,zuc:s ’

Session data Files

How to get from
requirements to a
concrete system?

,NoSQL" term coined in 2009
Interpretation: ,,Not Only SQL?

Typical properties:
Non-relational
Open-Source
Schema-less (schema-free
Optimized for distribution (clusters
Tunable consistency

NoSQL-Databases.org:
Curvent list has over 200
NoSQL systems

wicc Column Stors / Column Familics

- Up: n Placc. W
Incoxing, GricFS, Frooesre + COMMCTT
Liccmsclis 2 Tak

TC cha
sub-cucrics,
- Sync

= ScRnoec
=

EnEuUsET

pRCCUCE, Groupco

Enc Azsync Mastr 5

Cromonis
=

NoSQL: Two Mqin

Scalability Impedance Mismatch

LD Line Item 1:.
Customer /\\Llne ltem?2: ... Q\\
Payment: Credit Card, ... \

‘ e
User-generated data, ---+

Request load

Line Items

/A
®

J

Orders

I —— A___

((l(
@
@
(@

Payment
y Customers

Dqtq Remodeling

RDBMS: NoSQL DB:

Item[Price] -
Item[Discount]

SELECT Name, Age

(((B

FROM Customers lW\p(icit
schema

I N N -
I 97 =

_.41

=

Explicit
schema

Scale-Up vs.Klele|[cET0]T]s

Scale-Up (vertical scaling): Scale-Out (horizontal scaling):

: —F—
More RAM | ! =
D More CPU | | .ll > .., ..,
w More HDD i g g g
: - &
I —
| A
: Commodity
: Hardware

Shared-Nothing
Architecture

Shift: Open-Source & Commodity

Commercial DBMS

Specialized DB hardware

(Oracle Exadata, etc.) Commodity hardware

Highly available network
(Infiniband, Fabric Path, etc.)

Commodity network
(Ethernet, etc.)

Highly Available Storage (SAN,
RAID, etc.)

Commodity drives (standard
HDDs, JBOD)

Il shift: Shared Nothing

Shift towards higher distribution & less coordination:

20000006 000¢
MEMMMMEMMMM

M| M| M
i L 1 s
Shared Memory | Shared Disk | Shared Nothing
e.g. "Oracle 11g" e.g. "Oracle RAC" e.g. "NoSQL"

Typical [8[e[H]i{[eleldle]s) SChemes

Two common criteria:

O Data Consistency/Availability
Model Trade-Off

, AP: Available & Partition
Tolerant

> Key-Value

> Wide-Column CP: Consistent &
d .)
Partition Tolerant

—>% Document o
__, CA: Not Partition

Cig Graph Tolerant

. Tolerance

o¥:\:dTheorem

In a distributed system, only 2 out of the following 3
properties are achievable at the same time:
Consistency: all clients have the same view on the data

Availability: every request to a non-failed node most
result in correct response

Partition tolerance: the system has to continue working,
even under arbitrary network partitions

Consistency

Partition L
. Availability

Impossible

m Eric Brewer, ACM-PODC Keynote, Juli 2000

m Gilbert, Lynch: Brewer's Conjecture and the Feasibility of
Consistent, Available, Partition-Tolerant Web Services, SigAct News 2002

CAP Theorem: Intuitive |2 {e]le[glejde]y

Problem: when a network partition occurs, either
consistency or availability have to be given up

Block response until Response before
ACK arrives successful replication
- Consistency = Availability

Value =V, Value =V,

Network partition

NoSQL TN

Data models

Relational
Key-Value

Every client can always
read and write

CA AP
Oracle, MySQL, ... Dynamo, Redis, Riak, Voldemort
SimpleDB

CcP

Document-Oriented

All c.Ilents share the Postgres, MySQL Cluster, Oracle RAC AII nqdes continue
same view on the data working under network
MongoDB, RethinkDB, DocumentsDB partitions

m Nathan Hurst: Visual Guide to NoSQL Systems
http://blog.nahurst.com/visual-guide-to-nosql-systems

J\e{5Ked: What About Normal Operation?

ldea: Classify systems by behavior during network partitions and normal operation

es
y Partiti no
on
| | No consequence of the |

CAP theorem

Avail- Con-

ability sistency

COI’\-

ws - 0
~=—a Se——a ———— ————
-~ ~—— _— —————
- - - - -
~~a —-— —— _—— -
s, ~~ ——— ————— ——— P
b T ——— —_———— —_— -

~— ~—— m———— m——— -

Se~—— Smasz m——— -

—_——IT T _m=mm==g e

—— -

Cassandra, Riak, etc. HBase, BigTable and ACID systems

m Abadi, Daniel. "Consistency tradeoffs in modern distributed
database system design: CAP is only part of the story."

ACID vs.|:7:%)=

#ACID BASE <

Model of many

»aold standard |
FOV RDBMSS Atomicity AB\?aslllcaaglli NOSQL SHSt@W\S

Consistency Soft State

: Eventually

Isolation Consistent
Durability

m http://queue.acm.org/detail.cfm?id=1394128

\[eXo]R| andscape

N TT') M0 HYPERTABLE
L)

q,? amazon g .
Document (ﬁmazo?DynamaDB) HBASE ._M/ (‘&.wi

@ Google ,
S==B Datastore Cassandra

‘ mongoDB

Wide Column

U £ ,
‘: ' 'RethinkDB Key-Value é redis

CouchBan
RAPNDE wriak 3@B‘s§r§i?e2-~|83 =

Graph CoucHBase

» Neogj “ Project Voldemort

E' “ the graph database
4. InfiniteGraph

1 CINOSQL R KeTe)eYe)

Requirements\%3

Functional

Scan Queries

ACID Transactions

Conditional or Atomic Writes

Joins

Sorting

Filter Queries

Full-text Search

Aggregation and Analytics

Techniques

Sharding

Range-Sharding
Hash-Sharding
Entity-Group Sharding
Consistent Hashing
Shared-Disk

Replication

Commit/Consensus Protocol
Synchronous

Asynchronous

Primary Copy

Update Anywhere

Storage Management

Logging
Update-in-Place
Caching

In-Memory Storage
Append-Only Storage

Query Processing

Global Secondary Indexing
Local Secondary Indexing
Query Planning

Analytics Framework
Materialized Views

Techniques

Non-Functional

Data Scalability

Write Scalability

Read Scalability

Elasticity

Consistency

Write Latency

Read Latency

Write Throughput

Read Availability

Write Availability

Durability

m https://www.springer.com/gp/book/9783030435059

vs. Techniques

enable enable
/,, \\\\ ,/,’ \\\
/ b / S
application Pivotal NoSQL operational
requirements techniques requirements

N
ll“

@\
-
\

m https://www.springer.com/gp/book/9783030435059

Functional Techniques Non-Functional

Sharding Data Scalability

Scan Queries

Range-Sharding

Hash-Sharding

Entity-Group Sharding Write Scalability

ACID Transactions Consistent Hashing
Shared-Disk Read Scalability
Conditional or Atomic Writes Elasticity
Joins

Sorting

M: Scaling Storage & Throughput

Horizontal distribution of data over nodes

Peter

Partitioning strategies: Hash-based vs. Range-based
Difficulty: Multi-Shard-Operations (join, aggregation)

m: Approaches

Hash-based Sharding

Hash of data values (e.g. key) determines partition (shard)

Pro: Even distribution
Contra: No data locality

Range-based Sharding

Assigns ranges defined over fields (shard keys) to partitions
Pro: Enables Range Scans and Sorting
Contra: Repartitioning/balancing required

Entity-Group Sharding

Explicit data co-location for single-node-transactions
Pro: Enables ACID Transactions
Contra: Partitioning not easily changable

Implemented in

Dynamo, Cassandra,
MongoDB, Riak, Redis, Azure
Table,

Implemented in

BigTable, HBase, DocumentDB
Hypertable, MongoDB,
RethinkDB, Espresso

Implemented in

MegaStore, G-Store,
Relational Cloud,
Cloud SQL Server

David J DeWitt and Jim N Gray: “Parallel database systems: The future of high performance
database systems,” Communications of the ACM, volume 35, number 6, pages 85-98, June 1992.

Functional

ACID Transactions

Conditional or Atomic Writes

Techniques

Replication

Commit/Consensus Protocol
Synchronous

Asynchronous

Primary Copy

Update Anywhere

Non-Functional

Read Scalability

Consistency

Write Latency

Read Latency

Read Availability

Write Availability

{=Tell[eleldle]s): Read Scalability & Fault Tolerance

Stores N copies of each data item

S\mc‘nroﬂousl

~oyachron®” DB Node

DB Node

Consistency model: synchronous vs asynchronous
Coordination: Multi-Master, Master-Slave

Ozsu, M.T., Valduriez, P.: Principles of distributed database systems.
Springer Science & Business Media (2011)

{=Te]|[efedle]a): When

Asynchronous (lazy) ,
_ _ _ Implemented in
Writes are acknowledged immdediately

Performed through log shipping or update propagation | Pynamo, Riak, CouchDB,
Pro: Fast writ dinati ded Redis, Cassandra, Voldemort,

ro: Fast writes, no coordination neede MongoDB, RethinkDB
Contra: Replica data potentially stale (inconsistent)

Synchronous (eager)

The node accepting writes synchronously propagates Implemented in

updates/transactions before acknowledging .
BigTable, HBase, Accumulo,

Pro: Consistent CouchBase, MongoDB,
Contra: needs a commit protocol (more roundtrips), RethinkDB

unavaialable under certain network partitions

m Charron-Bost, B., Pedone, F., Schiper, A. (eds.): Replication: Theory and
Practice, Lecture Notes in Computer Science, vol. 5959. Springer (2010)

1{=Tel|[eleldle]a): Where

Master-Slave (Primary Copy)
Only a dedicated master is allowed to accept writes, slaves are read-replicas
Pro: reads from the master are consistent
Contra: master is a bottleneck and SPOF

Multi-Master (Update anywhere)

The server node accepting the writes synchronously propagates the update
or transaction before acknowledging

Pro: fast and highly-available
Contra: either needs coordination protocols (e.g. Paxos) or is inconsistent

m Charron-Bost, B., Pedone, F., Schiper, A. (eds.): Replication: Theory and
Practice, Lecture Notes in Computer Science, vol. 5959. Springer (2010)

Functional Techniques Non-Functional

Storage Management

Logging Read Latency
Update-in-Place

Caching

In-Memory Storage Write Throughput
Append-Only Storage

Durability

Njelgele[FAManagement

Improves
latency.
Typical Uses in DBMSs:
A In-Memory/
.41__), SR e Caching Data Caching
o SW e Primary Storage Is good for
> e Data Structures
RAM read latency.
§ SR Cachi Update-In-
- e Caching
3 § e Logging f f Place
é’_ o SW | © Primary Storage oata
-(3 P Append-Only
2 /O .
SR _ Increases write
e Logging Log i Logging throughput
W e Primary Storage '
v S Persistent Storage
. Low Performance RR: Random Reads SR: Sequential Reads Promotes durability of

|:| High Performance RW: Random Writes SW: Sequential Writes write operations.

Functional Techniques Non-Functional

Joins

Sorting

Read Latency

Filter Queries

Query Processing

Full-text Search Global Secondary Indexing

Local Secondary Indexing
Query Planning

Analytics Framework

Aggregation and Analytics Materialized Views

WelelellSecondary Indexing
Partition | W (Partition Il A

Key Color Color
* MongoDB

Yell .
Indexing is always etow * Riak
local to a partition. 88 Blue e Cassandra

~N

12 Red
56 Blue

Data

77 i = EUE * Elasticsearch
* SolrCloud
x Term Match < Term Match e \oltDB
‘g Red [12,77] 'g Yellow [104]
Blue [56] Blue [188,192]
\- \- J

Scatter-gather query
pattern.

WHERE color=blue

m Kleppmann, Martin. "Designing data-intensive
applications." (2016).

~N

Partition |

~

~N

Key Color
(48]
=~ 12 Consistent Index-
O 56 maintenance requires

77 distributed transaction.
< Term Match ,
< Yellow [104] P 1
< A

Blue [56, 188, 192]

[Targeted Query

\
N
(Index «\% Data

Key
104
188
» 192

Term

Red

Partition Il

Color
Yellow
Blue

Blue

Match
[12,77]

~

WHERE color=blue

MSecondqry Indexing

Implemented in

* DynamoDB

* Oracle Datawarehouse
e Riak (Search)

e Cassandra (Search)

Kleppmann, Martin. "Designing data-intensive
applications." (2016).

Processing Techniques: Summary

Local Secondary Indexing: Fast writes, scatter-gather queries
Global Secondary Indexing: Slow or inconsistent writes, fast queries

(Distributed) Query Planning: scarce in NoSQL systems but increasing (e.g.
left-outer equi-joins in MongoDB and B6-joins in RethinkDB)

Analytics Frameworks: fallback for missing query capabilities
Materialized Views: similar to global indexing

NoSQLMTrea

Fast Looku ps

RA ' Unbounded
Ap i Cp ACID iAvalablllty Ad- hoc

Access

Complex Queries

HDD-Size ' Unbounded

Query Pattern

Analytics
! !
Redis Cassandra HBase RDBMS CouchDB MongoDB Hadoop, Spark
Memcache Riak MongoDB Neo4j MongoDB RethinkDB Parallel DWH
Voldemort CouchBase RavenDB SimpleDB HBase,Accumulo Cassandra, HBase
Aerospike DynamoDB| |MarkLogic ElasticSeach, Solr Riak, MongoDB
T R < i < R < T < -
Cache Shbopilllg- I_(l?rgler u m NS?CIaI . Big Data
_ aske (__History J etwor

Example Applications

What About [IH}}-Based Systems?

= 0] =]

A Data Pipeline

Persistence/ |
Streaming Processing

Nelo|[BTO0lIldMade Feasible

Data processing frameworks hide complexities of scaling, e.g.:

* Deployment - code distribution, starting/stopping work

* Monitoring - health checks, application stats

e Scheduling - assigning work, rebalancing

* Fault-tolerance - restarting workers, rescheduling failed work

Running in cluster

121 121 | =1
Running on single node IQ?' w?| k)?'
1 = Scaling out I___'I l_—_'l l_—_'l
| >
=% 2 e
[5=, l@l [51,1

Big Data Processing

Spor’iz Ggogle Dataflo.w (l-.") HHHHH

What towsuse when??

@ Flink §g kafka streams
o TEREE

low latency

C, concord

high throughput

&Flink ,

5 STORM ok’
5 STORM STORM ggeoming Sp ok’
m '# 24 Amazon Elastic
LL_/-J MapReduce

>
low latency high throughput

Stream Processing System

Spark Flink

Storm Trident Samza . .
Streaming (streaming)
Strictest at-least- exactly- at-least-
exactly-once exactly-once
Guarantee once once once
Achievable
<100 ms <100 ms <100 ms <1 second <100 ms
Latency
State v v v
Management (small state) (small state)
Processin one-at-a- . one-at-a- . one-at-a-
8 . micro-batch . micro-batch .
Model time time time
no
Backpressure \/ \/ : \/ \/
(buffering)
. between within between within
Ordering X " "
batches partitions batches partitions

Elasticity v v X v X

Databases:

Combining Push & Pull

Push vs. Pull:pigeleB0lii1in Data Management

Database Real-Time deliver.y Datastream
Management query Databases semantics Management
semantics
static dynamic — - dynamic
collections collections data streams

o

Pull-Based Push-Based

Ligelelid[elalelADatabases: No Request, No Datal

What'’s the

current state? D A @

circular shapes)

L =

Periodic Polling for query result maintenance:
- inefficient
- slow

A

Cl BN ElDatabases: Always Up-to-Date

LIAO

circular shapes ’\
(o]

="

Real-Time Queries for query result maintenance:
- efficient
- fast

A

Real-Time Dqtabqse

METE\R {RethinkoB @) Parse / Firebase

Poll-and-Diff Change Log Tailing Unknown
Write Scalability \/ X X
?

Read Scalability

(100k connections)

N N %

Composite

Filters (AND/OR) (AND In Firestore)

Queries

Event Stream
Queries

NN X X X N\ «x
NN N N N X\ X\ «%
% ¥ X X X X

Sorted Queries X
(single attribute)
Limit X v
Offset X
(value-based)
Self-Maintaining X X

v

m W. Wingerath, F. Gessert, N. Ritter: InvaliDB: Scalable Push-Based Real-
Time Queries on Top of Pull-Based Databases (Extended), VLDB 2020

: A Short History of Data Management

: CEP & Stream
Relational Databases Streams Processing
Entity-Relationship Model Spark
: MapReduce Bagend
Trlggers SQL Starburst STREAM Samza
Ing§ \ Standard Telegraph B|gtable eteor

)

\
\ HiPAC GFS \

System R

Rap|de Dynamo| Flink | Firebase
PostgreSQL .
_ Aurora & RethinkDB
Relational Storm
Vodel Borealis
Big Data & Real-Time

ive D
Active Databases NoSQL Databases

SPRINGER BRIEFS IN COMPUTER SCIENCE

Felix Gessert
Wolfram Wingerath
Norbert Ritter

B Fast and Real'Time&
Scalabl - Stream Data
CaldDI€ Management

Cloud Data
Management

Push-Based Data
in Research &
Practice

@ Springer

@ Springer

For videos & books,
visit slides.bagend.com!

slides.baqend.com

The Web Conference 2021

April 15, 2021

Tutorial 18: Going for Yol

09:00
09:15
09:40
09:50
10:00
10:40
10:50
11:00
11:40
11:50
12:00
12:00

Up next! 2 12:30

12:50

Introduction

Part 1: Efficient Frontend Design

Q&A

Coffee Break

Part 2: High-Performance Networking
Q&A

Coffee Break

Part 3: Scalable Backend Architectures
Q&A

Coffee Break

Part 4: Performance Tracking & Analysis
The Core Web Vitals

Measuring Web Performance

Q&A Bagend

Google Guest

Speaker!

