

Application LayerApplication Layer

Billing DataBilling Data Nested
Application Data

Nested
Application Data

Session dataSession data

Search IndexSearch Index

FilesFiles

Amazon Elastic

MapReduce

Google Cloud

Storage
Friend

network
Friend

network Cached data
& metrics

Cached data
& metrics

Recommen-
dation Engine
Recommen-

dation Engine

Application LayerApplication Layer

Billing DataBilling Data Nested
Application Data

Nested
Application Data

Session dataSession data

Search IndexSearch Index

FilesFiles

Amazon Elastic

MapReduce

Google Cloud

Storage
Friend

network
Friend

network Cached data
& metrics

Cached data
& metrics

Recommen-
dation Engine
Recommen-

dation Engine

 „NoSQL“ term coined in 2009

 Interpretation: „Not Only SQL“

 Typical properties:
◦ Non-relational

◦ Open-Source

◦ Schema-less (schema-free)

◦ Optimized for distribution (clusters)

◦ Tunable consistency

NoSQL-Databases.org:
Current list has over 200

NoSQL systems

Scalability Impedance Mismatch

?

ID

Customer

Line Item 1: …
Line Item2: …

Orders
Line Items

Customers
Payment

User-generated data,
Request load

Payment: Credit Card, …

RDBMS: NoSQL DB:

SELECT Name, Age
FROM Customers

Customers

Explicit
schema

Item[Price] -
Item[Discount]

Implicit
schema

Scale-Up (vertical scaling):

More RAM

More CPU

More HDD

Scale-Out (horizontal scaling):

Commodity
Hardware

Shared-Nothing
Architecture

Highly Available Storage (SAN,
RAID, etc.)

Highly available network
(Infiniband, Fabric Path, etc.)

Specialized DB hardware
(Oracle Exadata, etc.)

Commercial DBMS

Commodity drives (standard
HDDs, JBOD)

Commodity network
(Ethernet, etc.)

Commodity hardware

Open-Source DBMS

Shared Memory
e.g. "Oracle 11g"

Shared Disk
e.g. "Oracle RAC"

Shared Nothing
e.g. "NoSQL"

Shift towards higher distribution & less coordination:

 Two common criteria:

Data
Model

Consistency/Availability
Trade-Off

AP: Available & Partition
Tolerant

CP: Consistent &
Partition Tolerant

Graph

CA: Not Partition
Tolerant

Document

Wide-Column

Key-Value

In a distributed system, only 2 out of the following 3
properties are achievable at the same time:
◦ Consistency: all clients have the same view on the data

◦ Availability: every request to a non-failed node most
result in correct response

◦ Partition tolerance: the system has to continue working,
even under arbitrary network partitions

Eric Brewer, ACM-PODC Keynote, Juli 2000

Gilbert, Lynch: Brewer's Conjecture and the Feasibility of
Consistent, Available, Partition-Tolerant Web Services, SigAct News 2002

Consistency

Availability
Partition
Tolerance

Impossible

 Problem: when a network partition occurs, either
consistency or availability have to be given up

Replication Value = V0

N2

Value = V1

N1

Response before
successful replication
→ Availability

Block response until
ACK arrives
→ Consistency

Network partition

A

C P

Every client can always
read and write

All nodes continue
working under network
partitions

All clients share the
same view on the data

Nathan Hurst: Visual Guide to NoSQL Systems
http://blog.nahurst.com/visual-guide-to-nosql-systems

CA
Oracle, MySQL, …

Data models

Relational
Key-Value
Wide-Column
Document-Oriented

AP
Dynamo, Redis, Riak, Voldemort
Cassandra
SimpleDB

CP
Postgres, MySQL Cluster, Oracle RAC
BigTable, HBase, Accumulo, Azure Tables
MongoDB, RethinkDB, DocumentsDB

 Idea: Classify systems by behavior during network partitions and normal operation

Partiti

on

yes no

Abadi, Daniel. "Consistency tradeoffs in modern distributed
database system design: CAP is only part of the story."

Avail-

ability

Con-

sistency

Laten-

cy

Con-

sistency

PA/EL - Dynamo-Style
Cassandra, Riak, etc.

PA/EC - MongoDB PC/EC – Always Consistent
HBase, BigTable and ACID systems

No consequence of the
CAP theorem

ACID

Atomicity

Consistency

Isolation

Durability

BASE

Basically
Available

Soft State

Eventually
Consistent

„Gold standard“
for RDBMSs

Model of many
NoSQL systems

http://queue.acm.org/detail.cfm?id=1394128

Document

Wide Column

Graph

Key-Value

Project Voldemort

Google
Datastore

Functional Techniques Non-Functional

Scan Queries

ACID Transactions

Conditional or Atomic Writes

Joins

Sorting

Filter Queries

Full-text Search

Aggregation and Analytics

Sharding

Replication

Logging
Update-in-Place
Caching
In-Memory Storage
Append-Only Storage

Storage Management

Query Processing

Elasticity

Consistency

Read Latency

Write Throughput

Read Availability

Write Availability

Durability

Write Latency

Write Scalability

Read Scalability

Data Scalability

Global Secondary Indexing
Local Secondary Indexing
Query Planning
Analytics Framework
Materialized Views

Commit/Consensus Protocol
Synchronous
Asynchronous
Primary Copy
Update Anywhere

Range-Sharding
Hash-Sharding
Entity-Group Sharding
Consistent Hashing
Shared-Disk

https://www.springer.com/gp/book/9783030435059

Functional Techniques Non-Functional

Scan Queries

ACID Transactions

Conditional or Atomic Writes

Joins

Sorting

Filter Queries

Full-text Search

Aggregation and Analytics

Sharding

Replication

Logging
Update-in-Place
Caching
In-Memory Storage
Append-Only Storage

Storage Management

Query Processing

Elasticity

Consistency

Read Latency

Write Throughput

Read Availability

Write Availability

Durability

Write Latency

Write Scalability

Read Scalability

Data Scalability

Global Secondary Indexing
Local Secondary Indexing
Query Planning
Analytics Framework
Materialized Views

Commit/Consensus Protocol
Synchronous
Asynchronous
Primary Copy
Update Anywhere

Range-Sharding
Hash-Sharding
Entity-Group Sharding
Consistent Hashing
Shared-Disk

Pivotal NoSQL
techniques

application
requirements

enable

operational
requirements

enable

https://www.springer.com/gp/book/9783030435059

Functional Techniques Non-Functional

Scan Queries

ACID Transactions

Conditional or Atomic Writes

Joins

Sorting

Sharding

Elasticity

Write Scalability

Read Scalability

Data Scalability

Range-Sharding
Hash-Sharding
Entity-Group Sharding
Consistent Hashing
Shared-Disk

 Horizontal distribution of data over nodes

 Partitioning strategies: Hash-based vs. Range-based

 Difficulty: Multi-Shard-Operations (join, aggregation)

Shard 1

Shard 2

Shard 3

[G-O]
FranzPeter

Hash-based Sharding
◦ Hash of data values (e.g. key) determines partition (shard)
◦ Pro: Even distribution
◦ Contra: No data locality

Range-based Sharding
◦ Assigns ranges defined over fields (shard keys) to partitions
◦ Pro: Enables Range Scans and Sorting
◦ Contra: Repartitioning/balancing required

Entity-Group Sharding
◦ Explicit data co-location for single-node-transactions
◦ Pro: Enables ACID Transactions
◦ Contra: Partitioning not easily changable

Dynamo, Cassandra,
MongoDB, Riak, Redis, Azure
Table,

Implemented in

BigTable, HBase, DocumentDB
Hypertable, MongoDB,
RethinkDB, Espresso

Implemented in

MegaStore, G-Store,
Relational Cloud,
Cloud SQL Server

Implemented in

David J DeWitt and Jim N Gray: “Parallel database systems: The future of high performance
database systems,” Communications of the ACM, volume 35, number 6, pages 85–98, June 1992.

Functional Techniques Non-Functional

ACID Transactions

Conditional or Atomic Writes
Replication

Consistency

Read Latency

Read Availability

Write Availability

Write Latency

Read Scalability

Commit/Consensus Protocol
Synchronous
Asynchronous
Primary Copy
Update Anywhere

 Stores N copies of each data item

 Consistency model: synchronous vs asynchronous

 Coordination: Multi-Master, Master-Slave

DB Node

DB Node

DB Node

Özsu, M.T., Valduriez, P.: Principles of distributed database systems.
Springer Science & Business Media (2011)

Asynchronous (lazy)
◦ Writes are acknowledged immdediately

◦ Performed through log shipping or update propagation

◦ Pro: Fast writes, no coordination needed

◦ Contra: Replica data potentially stale (inconsistent)

Synchronous (eager)
◦ The node accepting writes synchronously propagates

updates/transactions before acknowledging

◦ Pro: Consistent

◦ Contra: needs a commit protocol (more roundtrips),
unavaialable under certain network partitions

Dynamo , Riak, CouchDB,
Redis, Cassandra, Voldemort,
MongoDB, RethinkDB

Implemented in

BigTable, HBase, Accumulo,
CouchBase, MongoDB,
RethinkDB

Implemented in

Charron-Bost, B., Pedone, F., Schiper, A. (eds.): Replication: Theory and
Practice, Lecture Notes in Computer Science, vol. 5959. Springer (2010)

Master-Slave (Primary Copy)
◦ Only a dedicated master is allowed to accept writes, slaves are read-replicas

◦ Pro: reads from the master are consistent

◦ Contra: master is a bottleneck and SPOF

Multi-Master (Update anywhere)
◦ The server node accepting the writes synchronously propagates the update

or transaction before acknowledging

◦ Pro: fast and highly-available

◦ Contra: either needs coordination protocols (e.g. Paxos) or is inconsistent

Charron-Bost, B., Pedone, F., Schiper, A. (eds.): Replication: Theory and
Practice, Lecture Notes in Computer Science, vol. 5959. Springer (2010)

Functional Techniques Non-Functional

Logging
Update-in-Place
Caching
In-Memory Storage
Append-Only Storage

Storage Management

Read Latency

Write Throughput

Durability

Si
ze

H
D

D
SS

D
R

A
M

SRRR

SWRW

SRRR

SWRW

SRRR

SWRW

• Caching
• Primary Storage
• Data Structures

D
ur

ab
le

V
ol

at
ile

• Caching
• Logging
• Primary Storage

• Logging
• Primary Storage

High Performance

Typical Uses in DBMSs:

Low Performance RR: Random Reads
RW: Random Writes

SR: Sequential Reads
SW: Sequential Writes

Sp
ee

d
, C

o
st

RAM

Persistent Storage

Logging

Append-Only
I/O

Update-In-
Place

Data
In-Memory/
Caching

Log

Data

Promotes durability of
write operations.

Increases write
throughput.

Is good for
read latency.

Improves
latency.

Functional Techniques Non-Functional

Joins

Sorting

Filter Queries

Full-text Search

Aggregation and Analytics

Query Processing

Read Latency

Global Secondary Indexing
Local Secondary Indexing
Query Planning
Analytics Framework
Materialized Views

Kleppmann, Martin. "Designing data-intensive
applications." (2016).

Partition I

Key Color

12 Red

56 Blue

77 Red

Term Match

Red [12,77]

Blue [56]

D
at

a
In

d
ex

Partition II

Key Color

104 Yellow

188 Blue

192 Blue

Term Match

Yellow [104]

Blue [188,192]
D

at
a

In
d

ex

WHERE color=blue

Scatter-gather query
pattern.

Indexing is always
local to a partition.

• MongoDB
• Riak
• Cassandra
• Elasticsearch
• SolrCloud
• VoltDB

Implemented in

Kleppmann, Martin. "Designing data-intensive
applications." (2016).

Partition I

Key Color

12 Red

56 Blue

77 Red

Term Match

Yellow [104]

Blue [56, 188, 192]

D
at

a
In

d
ex

Partition II

Key Color

104 Yellow

188 Blue

192 Blue

Term Match

Red [12,77]
D

at
a

In
d

ex

WHERE color=blue

Targeted Query

Consistent Index-
maintenance requires
distributed transaction.

• DynamoDB
• Oracle Datawarehouse
• Riak (Search)
• Cassandra (Search)

Implemented in

 Local Secondary Indexing: Fast writes, scatter-gather queries

 Global Secondary Indexing: Slow or inconsistent writes, fast queries

 (Distributed) Query Planning: scarce in NoSQL systems but increasing (e.g.
left-outer equi-joins in MongoDB and θ-joins in RethinkDB)

 Analytics Frameworks: fallback for missing query capabilities

 Materialized Views: similar to global indexing

Access

Fast Lookups

RAM

Redis
Memcache

Unbounded

AP CP

Complex Queries

HDD-Size Unbounded

AnalyticsACID Availability Ad-hoc

Cache

VolumeVolume

CAP Query PatternConsistency

Example Applications

Cassandra
Riak

Voldemort
Aerospike

Shopping-
basket

HBase
MongoDB
CouchBase
DynamoDB

Order
History

RDBMS
Neo4j

RavenDB
MarkLogic

OLTP

CouchDB
MongoDB
SimpleDB

Website

MongoDB
RethinkDB

HBase,Accumulo
ElasticSeach, Solr

Social
Network

Hadoop, Spark
Parallel DWH

Cassandra, HBase
Riak, MongoDB

Big Data

ApplicationProcessing
Persistence/
Streaming Serving

Data processing frameworks hide complexities of scaling, e.g.:

• Deployment - code distribution, starting/stopping work

• Monitoring - health checks, application stats

• Scheduling - assigning work, rebalancing

• Fault-tolerance - restarting workers, rescheduling failed work

Scaling out

Running in cluster

Running on single node

Amazon Elastic

MapReduce

Google Dataflow

low latency high throughput

stream batchmicro-batch

Storm Trident Samza
Spark

Streaming
Flink

(streaming)

Strictest
Guarantee

at-least-
once

exactly-
once

at-least-
once

exactly-once exactly-once

Achievable
Latency

≪100 ms <100 ms <100 ms <1 second <100 ms

State
Management


(small state)


(small state)

✓ ✓ ✓

Processing
Model

one-at-a-
time

micro-batch
one-at-a-

time
micro-batch

one-at-a-
time

Backpressure ✓ ✓
no

(buffering) ✓ ✓

Ordering 
between
batches

within
partitions

between
batches

within
partitions

Elasticity ✓ ✓  ✓ 

circular shapes

What‘s the
current state?

Periodic Polling for query result maintenance:
→ inefficient
→ slow

circular shapes

Real-Time Queries for query result maintenance:
→ efficient
→ fast

Poll-and-Diff Change Log Tailing Unknown 2-D Partitioning

Write Scalability ✓     ✓

Read Scalability  ✓ ✓ ✓ ?
(100k connections)

✓

Composite
Filters (AND/OR) ✓ ✓ ✓ ✓ 

(AND In Firestore)
✓

Sorted Queries ✓ ✓ ✓  
(single attribute)

✓

Limit ✓ ✓ ✓  ✓ ✓

Offset ✓ ✓   
(value-based)

✓

Self-Maintaining
Queries ✓ ✓    ✓

Event Stream
Queries ✓ ✓ ✓ ✓ ✓ ✓

W. Wingerath, F. Gessert, N. Ritter: InvaliDB: Scalable Push-Based Real-
Time Queries on Top of Pull-Based Databases (Extended), VLDB 2020

Relational
Model

Ingres

System R

Triggers

Entity-Relationship Model

SQL
Standard

PostgreSQL

HiPAC

Starburst

Rapide

STREAM

Aurora &
Borealis

MapReduce

Bigtable

Dynamo

Spark

Storm

Flink

Samza

RethinkDB

Meteor

Firebase

Baqend

GFS

Relational Databases

Active Databases

CEP &
Streams

Big Data &
NoSQL

Real-Time
Databases

Telegraph

Stream
Processing

1970

1980

1990

2000

2010

today

slides.baqend.com

